Microscopic Dynamical Exponents for Random-Random Directed Walk on a One-Dimensional Lattice with Quenched Disorder

Claude Aslangul, ${ }^{1,2}$ Marc Barthelemy, ${ }^{1}$ Noëlle Pottier, ${ }^{1}$ and Daniel Saint-James ${ }^{3,4}$

Received February 21, 1990; final April 6, 1990

Abstract

We demonstrate that the dynamical exponent for the time dependence of the coordinate, previously found for an average over disorder, is already present in any realization of a given sample. This ergodicity comes from the existence of a scaling law for the probability distribution of the parameter defining the asymptotic dynamical regime. The self-averaging or non-self-averaging properties of the normal or anomalous phases are direct consequences of this result.

KEY WORDS: Fluctuation phenomena; random processes; Brownian motion; localization in disordered structures.

1. POSITION OF THE PROBLEM AND BASIC EQUATIONS

In a previous paper, ${ }^{(1)}$ we considered the one-dimensional random directed walk on a lattice with quenched disorder described by the following master equation:

$$
\begin{equation*}
\frac{d p_{n}}{d t}=-W_{n} p_{n}+W_{n-1} p_{n-1} \tag{1}
\end{equation*}
$$

where $p_{n}(t)$ denotes the probability to be at the site labeled by n at time t. The W 's are nonnegative quantities chosen independently at random in

[^0]a given probability distribution $\rho(W)$. We here intend to obtain the dynamical regime at large times for the thermal expectation value of the coordinate, defined as
\[

$$
\begin{equation*}
\overline{x(t)}=\sum_{n=0}^{+\infty} n p_{n}(t) \tag{2}
\end{equation*}
$$

\]

As well known (see, e.g., ref. 2), the dynamics at large times is critically dependent on the relative importance of the bonds having a small W. In order to study quantitatively this effect, we choose $\rho(W)$ as given by

$$
\begin{equation*}
\rho(W)=\frac{\mu}{W_{m}^{\mu}} W^{\mu-1} \theta\left(W_{m}-W\right) \quad(W>0, \quad \mu>0) \tag{3}
\end{equation*}
$$

where θ is the unit step function. According to the value of μ as compared to 2 , one obtains either a standard regime with drift and diffusion (for $\mu>2$) or a nonstandard one (for $\mu<2$). For $1<\mu<2$, a drift is still present, while the mean square dispersion is superdiffusive. On the other hand, for $\mu<1$, the motion is wholly anomalous and is characterized by dynamical exponents for the coordinate and the mean-square displacement. All these exponents have been given in ref. 1 for quantities averaged over disorder; there we also explicitly demonstrated that, for $\mu<1, \overline{x(t)}$ is not a self-averaging quantity.

The aim of the present paper is to show that, at least for the coordinate, the same exponent is present at a "microscopic" level, i.e., does arise in a given sample. In ref. 1, we stated that the average over disorder qualitatively changes the behavior at large times of the probability $p_{0}(t)$ to be at time t at the starting point. This phenomenon does not hold for $\overline{x(t)}$. Indeed, we establish below that, for any μ, one has for a given sample

$$
\begin{equation*}
\overline{x(t)} \sim x_{0}\left(W_{m} t\right)^{\alpha} \tag{4}
\end{equation*}
$$

where α is a nonrandom exponent, whereas x_{0} is a random variable following a probability distribution law $p_{\mu}\left(x_{0}\right)$. In the following, we find $p_{\mu}\left(x_{0}\right)$ which is fully specified by the knowledge of all its positive moments [see Eq. (22) below]. The non-self-averaging property of $\overline{x(t)}$ for $\mu<1$ originates from the fluctuations of the random number x_{0}. On the contrary, for $\mu>1$, we shall show that x_{0} takes a single value with probability 1 , which is consistent with the fact that $\overline{x(t)}$ is then selfaveraging as time goes on. In addition, one has $\alpha=1$ in this case.

The problem is conveniently solved by the use of Laplace transforms. We set

$$
\begin{equation*}
x_{1}(z)=\int_{0}^{+\infty} e^{-z t} \overline{x(t)} d t, \quad \Gamma(z)=z^{2} x_{1}(z) \tag{5}
\end{equation*}
$$

where $\Gamma(z)$ is thus the Laplace transform of the acceleration $d^{2} \overline{x(t)} / d t^{2}$ and is a functional of all the W 's realized in a given sample. It is easily seen that the following functional equation holds:

$$
\begin{equation*}
\Gamma\left(z, W_{0}, W_{1}, W_{2}, \ldots\right)=\frac{W_{0}}{z+W_{0}}\left[z+\Gamma\left(z, W_{1}, W_{2}, W_{3}, \ldots\right)\right] \tag{6}
\end{equation*}
$$

Note that Γ is a positive quantity for z a real positive number. The same kind of relation was used in ref. 1 to get a closed explicit expression for quadratic moments [see Eqs. (14) and (15) in that paper]. From this relation one deduces that the probability distribution for the random variable $\Gamma, P(\Gamma, z)$, obeys the following integral equation:

$$
\begin{equation*}
P(\Gamma, z)=\int_{0}^{+\infty} d W \rho(W) \frac{z+W}{W} P\left(\frac{z+W}{W} \Gamma-z, z\right) \tag{7}
\end{equation*}
$$

Since Γ is a positive quantity, $P(\Gamma, z)$ identically vanishes for $\Gamma<0$. Once $P(\Gamma, z)$ is known, the probability density function for $x_{1}(z), Q\left(x_{1}, z\right)$, can be obtained by the use of the relation

$$
\begin{equation*}
Q\left(x_{1}, z\right)=z^{2} P\left(z^{2} x_{1}, z\right) \tag{8}
\end{equation*}
$$

Before entering into the details of the calculation, a comment is in order. As can be seen by iteration of Eq. (6), Γ is a so-called Kesten's variable. ${ }^{(3)}$ However, since $\left|W_{n} /\left(z+W_{n}\right)\right|<1$, the Kesten equation

$$
\left\langle[W /(z+W)]^{\kappa}\right\rangle=1
$$

has the unique trivial solution $\kappa=0$. In other words, Kesten's theorem does not apply here.

2. CALCULATION OF $Q\left(x_{1}, z\right)$ AND CONSEQUENCES

In order to analyze the integral equation (7), we first Laplace transform it with respect to Γ by defining

$$
\Pi(\tau, z)=\int_{0}^{+\infty} d \Gamma e^{-\Gamma \tau} P(\Gamma, z)
$$

Direct substitution in Eq. (7) yields

$$
\begin{equation*}
\Pi(\tau, z)=\int_{0}^{+\infty} d W \rho(W) e^{-W_{z \tau /(z+W}} \Pi\left(\frac{W}{z+W} \tau, z\right) \tag{9}
\end{equation*}
$$

This latter integral equation is now formally solved by assuming an entire series expansion for $\Pi(\tau, z)$:

$$
\begin{equation*}
\Pi(\tau, z)=1+\sum_{n=1}^{+\infty} \alpha_{n}(z) \tau^{n} \tag{10}
\end{equation*}
$$

Note that $\alpha_{n}(z)=(-1)^{n} n!\left\langle\Gamma^{n}\right\rangle_{P}(z)$. Thus, we are assuming that all the positive moments of $P(\Gamma, z)$ exist, a fact which will be established below. From Eq. (9), the coefficients are seen to obey the following triangular recursion:

$$
\begin{equation*}
\alpha_{n}(z)=\frac{S_{n}(z)}{1-S_{n}(z)} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!} z^{m} \alpha_{n-m}(z), \quad \alpha_{0}(z)=1 \tag{11}
\end{equation*}
$$

where the quantities $S_{n}(z)$ are defined as

$$
S_{n}(z)=\left\langle[W /(z+W)]^{n}\right\rangle
$$

By using Eq. (3), it is seen that $S_{n}(z)$ has the expansion

$$
\begin{equation*}
S_{n}(z)=1-\frac{\pi}{\sin \pi \mu} \frac{\left(z / W_{m}\right)^{\mu}}{B(n, \mu)}-\mu \sum_{p=1}^{+\infty} \frac{n(n+1) \cdots(n+p-1)}{p!(p-\mu)}\left[\frac{-z}{W_{m}}\right]^{p}+\cdots \tag{12}
\end{equation*}
$$

where $B(n, \mu)$ denotes as usual the beta function $\Gamma(n) \Gamma(\mu) / \Gamma(n+\mu)$. It appears hopeless to solve in a closed form the recursion (11) for any z. However, we can find the asymptotic form of $\alpha_{n}(z)$ for $|z| \ll W_{m}$; indeed, according to Eqs. (11) and (12), it is seen that the $\bar{\alpha}_{n}(z)$ have the following approximate expression:

$$
\begin{equation*}
\alpha_{n}(z)=\frac{(-1)^{n} z^{n}}{\left(1-S_{1}\right)\left(1-S_{2}\right) \cdots\left(1-S_{n}\right)}\left\{1+O\left[\left(\frac{z}{W_{m}}\right)^{\beta}\right]\right\} \tag{13}
\end{equation*}
$$

where β is a positive exponent.
This obviously yields the small-z behavior of $\Pi(\Gamma, z)$ and thus allows one to obtain the probability distribution of $\overline{x(t)}$ at large times. For clarity, we now investigate separately the two cases $\mu<1$ and $\mu>1$. Their differences result from the behavior of $\alpha_{1}(z)$ at small z; indeed, from (3) one has

$$
\begin{align*}
& \text { (i) } \mu<1: \quad\left\langle(z+W)^{-1}\right\rangle=W_{m}^{-\mu} \frac{\pi \mu}{\sin \pi \mu} z^{\mu-1}+\cdots \tag{14}\\
& \text { (ii) } \mu>1: \quad\left\langle(z+W)^{-1}\right\rangle=W_{m}^{-1} \frac{\mu-1}{\mu}+\cdots \equiv\left\langle\frac{1}{W}\right\rangle+\cdots \tag{15}
\end{align*}
$$

2.1. $\mu<1$

By using Eqs. (12)-(14), it then turns out that, for $|z| \ll W_{m}$, the α_{n} are given to the leading order by

$$
\begin{align*}
& \alpha_{n}(z) \approx(-1)^{n}\left[\left\langle\frac{1}{z+W}\right\rangle\right]^{-n} \frac{1!2!3!\cdots(n-1)!}{(\mu+1)^{n-1}(\mu+2)^{n-2} \cdots(\mu+n-1)} \quad(n>1) \\
& \alpha_{1}(z) \approx-\left[\left\langle\frac{1}{z+W}\right\rangle\right]^{-1} \tag{16}
\end{align*}
$$

From the above equations, it is readily seen that for small $z, \Pi(\tau, z)$ can be written as

$$
\begin{equation*}
\Pi(\tau, z)=F_{\mu}[Z(\tau, \mu)], \quad Z(\tau, \mu)=\frac{\sin \pi \mu}{\pi \mu} W_{m}^{\mu} z^{1-\mu} \tau \tag{17}
\end{equation*}
$$

where the function $F_{\mu}(Z)$ is given by the expansion

$$
\begin{align*}
F_{\mu}(Z) & =1-Z+\sum_{n=2}^{+\infty} \frac{1!2!\cdots(n-1)!}{(\mu+1)^{n-1}(\mu+2)^{n-2} \cdots(\mu+n-1)}(-Z)^{n} \\
& \equiv \sum_{n=0}^{+\infty} c_{n}(-Z)^{n} \tag{18}
\end{align*}
$$

Equations (17) and (18) show that $\Pi(\tau, z)$ is a series of the form $\sum_{n} d_{n}\left(z^{1-\mu}\right)^{n}$. In a full calculation, d_{n} should be replaced by some function of z, the leading term of which is precisely d_{n}, whereas the first correction is of the order $\left(z / W_{m}\right)^{\mu}$ or $\left(z / W_{m}\right)^{1-\mu}$ (see Section 3). For the asymptotic regime, the approximation given in (18) is sufficient.

The scaling law provided by (17) and (18) establishes the fact that, for any sample, $\overline{x(t)}$ behaves like t^{μ}. Indeed, let a random function $\phi(t)$ be such that $\phi(t)=a t^{\mu}$, where a is random and follows the probability distribution $\omega(a)$. Then, the Laplace transform of $\phi(t)$ is $\Phi(z)=a \Gamma(\mu+1) z^{-(\mu+1)}$; the probability distribution of Φ is simply given by

$$
\begin{equation*}
\Omega(\Phi, z)=\frac{Z^{\mu+1}}{\Gamma(\mu+1)} \omega\left[\frac{Z^{\mu+1}}{\Gamma(\mu+1)} \Phi\right] \tag{19}
\end{equation*}
$$

Denoting now by $f_{\mu}(X)$ the Laplace inverse of the function $F_{\mu}(Z)$ defined in Eq. (18), using the above scaling law (17) and Eq. (8), we find

$$
\begin{equation*}
\overline{x(t)} \sim x_{0}\left(W_{m} t\right)^{\mu} \tag{20}
\end{equation*}
$$

where x_{0} is a random number with a distribution $p_{\mu}\left(x_{0}\right)$ given by

$$
\begin{equation*}
p_{\mu}\left(x_{0}\right)=\frac{\pi \mu}{\sin \pi \mu} \Gamma(\mu+1) f_{\mu}\left[\frac{\pi \mu}{\sin \pi \mu} \Gamma(\mu+1) x_{0}\right] \tag{21}
\end{equation*}
$$

$p_{\mu}\left(x_{0}\right)$ is explicitly known by all its moments; indeed, one has

$$
\begin{equation*}
\left\langle x_{0}^{n}\right\rangle=\int_{0}^{+\infty} x_{0}^{n} p_{\mu}\left(x_{0}\right) d x_{0}=\left\langle x_{0}\right\rangle^{n} \frac{1!2!\cdots n!}{(\mu+1)^{n-1}(\mu+2)^{n-2} \cdots(\mu+n-1)} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle x_{0}\right\rangle=\frac{\sin \pi \mu}{\pi \mu \Gamma(\mu+1)} \tag{23}
\end{equation*}
$$

Note that Eqs. (20) and (23) reproduce the disorder average given by Eq. (21) in ref. 1, as they should. All the moments can be easily calculated in a recursive way due to the obvious relation

$$
\begin{equation*}
\left\langle x_{0}^{n+1}\right\rangle=\frac{(n+1)!}{(\mu+1)(\mu+2) \cdots(\mu+n)}\left\langle x_{0}\right\rangle\left\langle x_{0}^{n}\right\rangle \tag{24}
\end{equation*}
$$

It is interesting to observe that $p_{\mu}\left(x_{0}\right)$ is not a broad law in the sense that all its positive moments exist. Indeed, due to the fact that the series given by Eq. (18) is a convergent one for any finite Z and $\mu>0$, it can be inferred that $p_{\mu}\left(x_{0}\right)$ certainly decreases faster than a stretched exponential $\exp \left(-x_{0}^{\alpha}\right)(\alpha>0)$ at large x_{0}. This is consistent with the fact that Kesten's theorem is not applicable in our case. Note that $p_{\mu}\left(x_{0}\right)$ takes on a very simple form for $\mu=0$ or $\mu=1$:
(i) $\mu=0 \quad F_{0}(Z)=(1+Z)^{-1} \quad$ i.e., $\quad p_{\mu=0}\left(x_{0}\right)=e^{-x_{0}}$
(ii) $\mu=1 \quad F_{1}(Z)=e^{-Z} \quad$ i.e., $p_{\mu=1}\left(x_{0}\right)=\delta\left(x_{0}-0^{+}\right)$

Note that the value $\mu=0$ is not strictly allowed, since in this case, the repartition law $\rho(W)$ [see Eq. (3)] would not be normalized. There is a qualitative discontinuous change between $\mu=0$ and $\mu=0^{+}$, which is reflected by the fact that for any $\mu>0, F_{\mu}(Z)$ has no singularity at a finite distance of the origin, whereas for $\mu=0$, a unique pole arises for $Z=-1$. In this respect, the purely exponential function $e^{-x_{0}}$ cannot properly represent the limiting situation $\mu=0^{+}$, for which the value of $p\left(x_{0}=0^{+}\right)$is conjectured to be equal to 0.5 , and not to 1 .

The second result above means that, for $\mu=1$, the random number x_{0} takes the value 0^{+}with probability 1 . This is in agreement with the fact that, in this case, the velocity indeed vanishes and that $\mu=1$ is the onset of the self-averaging property for the velocity [see Eqs. (22) and (30) in ref. 1]. For $0<\mu<1, F_{\mu}(Z)$ smoothly interpolates between $F_{0}(Z)$ and $F_{1}(Z)$ (see Fig. 1).

A better insight into the distribution $p_{\mu}\left(x_{0}\right)$ is provided by the two first moments. From Eq. (23), one sees that the average value of x_{0} decreases from 1 to zero when μ increases from 0 to 1 (see Fig. 1). It is readily seen that

$$
\begin{array}{lll}
\mu \rightarrow 0^{+} & \left\langle x_{0}\right\rangle \rightarrow 1+C \mu & (C=\text { Euler's constant }) \\
\mu \rightarrow 1 & \left\langle x_{0}\right\rangle \rightarrow 1-\mu &
\end{array}
$$

The mean square deviation is given by

$$
\begin{equation*}
\left\langle x_{0}^{2}\right\rangle-\left\langle x_{0}\right\rangle^{2}=\left\langle x_{0}\right\rangle^{2} \frac{1-\mu}{1+\mu} \tag{25}
\end{equation*}
$$

and displays the same monotonic variation as $\left\langle x_{0}\right\rangle$ (see Fig. 2):

$$
\begin{array}{ll}
\mu \rightarrow 0^{+} & \left\langle x_{0}\right\rangle \rightarrow 1-2(C+1) \mu \\
\mu \rightarrow 1 & \left\langle x_{0}\right\rangle \rightarrow(1-\mu)^{3}
\end{array}
$$

On the contrary, higher cumulants do not have such a plain variation and display oscillationlike behavior.

The function $p_{\mu}\left(x_{0}\right)$ has been numerically computed according to the following scheme. Due to the fact that $F_{\mu}(Z)$ has no singularity, for $\mu>0$,

Fig. 1. Variation of the scaling function $F_{\mu}(X)$ as defined by Eq. (18) for $\mu=0.0,0.5,1.0$.

Fig. 2. Variation of the first moment and of the mean square dispersion of the probability distribution $p_{\mu}\left(x_{0}\right)$ giving the random coefficient x_{0} of $\overline{x(t)}$ in the asymptotic regime for $\mu<1$ [see Eqs. (22), (23), and (25)].
in the closed half-plane $\operatorname{Re} Z \geqslant 0$, the Bromwich line can be shifted onto the imaginary axis. The inverse Laplace transformation thus takes the form

$$
p_{\mu}\left(x_{0}\right)=\frac{1}{\left\langle x_{0}\right\rangle} \int_{0}^{+\infty} d t\left[F_{+}(t) \cos \frac{x_{0}}{\left\langle x_{0}\right\rangle} t+F_{-}(t) \sin \frac{x_{0}}{\left\langle x_{0}\right\rangle} t\right]
$$

where $F_{ \pm}$denotes the even and odd parts of $F_{\mu}(Z=i t)$:

$$
\begin{aligned}
& F_{+}(t)=\frac{1}{2}\left[F_{\mu}(i t)+F_{\mu}(-i t)\right]=\sum_{p=0}^{+\infty}(-1)^{p} c_{2 p} t^{2 p} \\
& F_{-}(t)=\frac{1}{2}\left[F_{\mu}(i t)-F_{\mu}(-i t)\right]=\sum_{p=0}^{+\infty}(-1)^{p} c_{2 p+1} t^{2 p+1}
\end{aligned}
$$

The coefficients c_{n} are given by the expansion (18). $p_{\mu}\left(x_{0}\right)$ can then be numerically computed by first summing the series and then performing a numerical quadrature. The results are reported on Fig. 3 for several values of μ. It is seen that, as expected, when μ increases, a peak occurs which is more and more pronounced and moves toward the origin. In the limit $\mu \rightarrow 1$, this fact yields the $\delta\left(x_{0}-0^{+}\right)$distribution. This phenomenon may be viewed as the precursor of the settling of the self-averaging property at $\mu=1$ (see Fig. 3 in ref. 1).

Fig. 3. Variation of the distribution function p_{μ} as a function of x_{0} for $\mu=0.0,0.4,0.5,0.6$, and 0.75. Recall that, stricto sensu, the curve $\mu=0$ does not belong to the class of models considered here.

2.2. $\mu>1$

Now, due to Eqs. (12), (13), and (15), one finds

$$
\begin{equation*}
\alpha_{n}(z)=\frac{(-1)^{n}}{n!}\left\langle W^{-1}\right\rangle^{-n} \tag{26}
\end{equation*}
$$

which in turn implies that

$$
\begin{equation*}
\Pi(\tau, z)=\exp \left(-\tau /\left\langle W^{-1}\right\rangle\right) \tag{27}
\end{equation*}
$$

Thus, for small $z, P(\Gamma, z)$ is given by

$$
\begin{equation*}
P(\Gamma, z)=\delta\left(\Gamma-1 /\left\langle W^{-1}\right\rangle\right) \tag{28}
\end{equation*}
$$

This shows that the limit of the derivative of $\overline{x(t)}$ with respect to time, i.e., the velocity, tends to $\left\langle W^{-1}\right\rangle^{-1}$ with probability 1 at large times. This thus quickly establishes the existence of a finite ordinary drift characterized by a self-averaging velocity, a result already obtained in ref. 4 by other methods.

3. RELEVANT TIME SCALE

On physical grounds, it is important to find the time scale t_{1} beyond which the asymptotic regime characterized by Eq. (20) is indeed displayed
in a given sample. It can be guessed that, in the anomalous phase $\mu<1$, this time should exhibit a minimum. Indeed, in order to achieve this asymptotic regime, the particle has to experience properly the surrounding disorder, i.e., to feel the existence of many nearly broken links. For $\mu \rightarrow 0^{+}$, these links are relatively numerous, but, since when a single small W is met, it takes a very large time (of the order of $1 / W$) to go ahead, it will take a long time to see many such links. Thus, a very long time has to elapse before the anomalous asymptotic regime can occur. This can be viewed as a precursor of the ultraslow Sinai diffusion which occurs at $\mu=0$ in the general walk. On the other hand, for $\mu \rightarrow 1$, the particle moves quasinormally $(\sim t)$ before encountering quasibroken links in sufficient number. It thus again takes a very long time to experience them, since those links are not very numerous.

One way to find an estimate of the time scale t_{1} is to analyze the first correction to the probability distribution $\Pi(\tau, z)$, the dominant term of

Fig. 4. Variation of the time scale $W_{m} t_{1}$ as defined in Section 3; each curve is labeled by the value of ε.
which is given by the scaling function $F_{\mu}(Z)$ as defined by Eq. (18). After a tedious algebra, it is found that $\Pi(\tau, z)$ can be written as

$$
\begin{equation*}
\Pi(\tau, z)=F_{\mu}(Z)-\frac{\pi}{2 \sin \pi \mu}\left(\frac{z}{W_{m}}\right)^{\mu} G_{\mu}(Z)+\frac{\mu}{1-\mu} \frac{\sin \pi \mu}{\pi}\left(\frac{z}{W_{m}}\right)^{1-\mu} H_{\mu}(Z) \tag{29}
\end{equation*}
$$

where G_{μ} and H_{μ} are known convergent series. In order to provide an estimate for t_{1}, we take G_{μ} and H_{μ} of the order of unity and we define the first correction Δ as

$$
\begin{equation*}
\Delta=\frac{\pi}{2 \sin \pi \mu}\left(\frac{z}{W_{m}}\right)^{\mu}+\frac{\mu}{1-\mu} \frac{\sin \pi \mu}{\pi}\left(\frac{z}{W_{m}}\right)^{1-\mu} \tag{30}
\end{equation*}
$$

Since $F_{\mu}(z)$ is also assumed to be of the order of unity, one requires that Δ be a small number ε. By writing $\Delta=\varepsilon$, we find $Z_{1}(\mu, \varepsilon)$ and eventually $t_{1}(\mu, \varepsilon)=1 / Z_{1}(\mu, \varepsilon)$. Thus, for times $t \gg t_{1}$, the regime described by Eq. (20) should be observable. Figure 4 shows the variation of $t_{1}(\mu, \varepsilon)$ as a function of μ for $\varepsilon=1$ and $\varepsilon=0.1$. Clearly, the time to enter the asymptotic regime, if properly described by the above t_{1}, is indeed very large, as expected.

REFERENCES

1. C. Aslangul, M. Barthélémy, N. Pottier, and D. Saint-James, J. Stat. Phys. 59:11 (1990).
2. J. P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal, Ann. Phys., submitted.
3. H. Kesten, M. V. Kozlov, and F. Spitzer, Compos. Math. 30:145 (1975).
4. C. Aslangul, J. P. Bouchaud, A. Georges, N. Pottier, and D. Saint-James, J. Stat. Phys. 55:1065 (1989).

[^0]: ${ }^{1}$ Groupe de Physique des Solides de l'Ecole Normale Supérieure (Laboratoire associé au CNRS), Université Paris VII, 75251 Paris Cedex 05, France.
 ${ }^{2}$ Université Paris VI, 75252 Paris Cedex 05, France.
 ${ }^{3}$ Laboratoire de Physique Statistique, Collège de France, 75231 Paris Cedex 05, France.
 ${ }^{4}$ Université Paris VII, 75251 Paris Cedex 05, France.

