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We demonstrate that the dynamical exponent for the time dependence of the 
coordinate, previously found for an average over disorder, is already present in 
any realization of a given sample. This ergodicity comes from the existence of 
a scaling law for the probability distribution of the parameter defining the 
asymptotic dynamical regime. The self-averaging or non-self-averaging proper- 
ties of the normal or anomalous phases are direct consequences of this result. 

KEY WORDS:  Fluctuation phenomena; random processes; Brownian 
motion; localization in disordered structures. 

1. POSITION OF THE PROBLEM AND BASIC EQUATIONS 

In a previous paper,(1) we considered the one-dimensional random directed 
walk on a lattice with quenched disorder described by the following master 
equation: 

dPn 
- W . p . + W . _ , p n  1 (1) 

dt 

where pn(t) denotes the probability to be at the site labeled by n at time 
t. The W's are nonnegative quantities chosen independently at random in 
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a given probability distribution p(W). We here intend to obtain the 
dynamical regime at large times for the thermal expectation value of the 
coordinate, defined as 

x ( t )=  ~ np,(t) (2) 
n = 0  

As well known (see, e.g., ref. 2), the dynamics at large times is critically 
dependent on the relative importance of the bonds having a small W. In 
order to study quantitatively this effect, we choose p(W) as given by 

p ( W )  = ~ m # - 10( W m - -  W )  
Wm 

(w>0, ~>0) (3) 

where 0 is the unit step function. According to the value of # as compared 
to 2, one obtains either a standard regime with drift and diffusion (for 
# > 2) or a nonstandard one (for # < 2). For 1 </~ < 2, a drift is still pre- 
sent, while the mean square dispersion is superdiffusive. On the other hand, 
for p < 1, the motion is wholly anomalous and is characterized by dynami- 
cal exponents for the coordinate and the mean-square displacement. 
All these exponents have been given in ref. 1 for quantities averaged over 
disorder; there we also explicitly demonstrated that, for/~ < 1, x(t) is not a 
self-averaging quantity. 

The aim of the present paper is to show that, at least for the coor- 
dinate, the same exponent is present at a "microscopic" level, i.e., does arise 
in a given sample. In ref. 1, we stated that the average over disorder 
qualitatively changes the behavior at large times of the probability po(t) to 
be at time t at the starting point. This phenomenon does not hold for x(t). 
Indeed, we establish below that, for any #, one has for a given sample 

x(t) ~xo(Wmt)  ~ (4) 

where e is a nonrandom exponent, whereas x 0 is a random variable 
following a probability distribution law p~(xo). In the following, we find 
pu(xo) which is fully specified by the knowledge of all its positive moments 
[see Eq. (22) below]. The non-self-averaging property of x(t) for ~ <  t 
originates from the fluctuations of the random number Xo. On the 
contrary, for /~ > 1, we shall show that Xo takes a single value with 
probability 1, which is consistent with the fact that x(t) is then self- 
averaging as time goes on. In addition, one has e = 1 in this case. 

The problem is conveniently solved by the use of Laplace transforms. 
We set 

Io +~ 
xl(z) = e-~'x(t) dt, F(z) = z~xl(z) (5) 
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where F(z) is thus the Laplace transform of the acceleration d2~(t)/dt 2 and 
is a functional of all the W's realized in a given sample. It is easily seen that 
the following functional equation holds: 

I~(z, Wo, W1, W 2 , . . . ) = - -  W0 
z +  Wo 

[2"+ /'(Z, W1, m2, W3,...)] (6) 

Note that F is a positive quantity for z a real positive number. The 
same kind of relation was used in ref. 1 to get a closed explicit expression 
for quadratic moments [see Eqs. (14) and (15) in that paper]. From this 
relation one deduces that the probability distribution for the random 
variable F, P(F, z), obeys the following integral equation: 

+o~ z +  W / z +  W 
P(F'z)=fo dWp(W)---W-- P ~ W - -  F - z , z )  (7) 

Since F is a positive quantity, P(F, z) identically vanishes for F < 0 .  
Once P(F, z) is known, the probability density function for Xl(Z), Q(xl, z), 
can be obtained by the use of the relation 

Q(Xl, z) = z2P(zZxl, z) (8) 

Before entering into the details of the calculation, a comment is in 
order. As can be seen by iteration of Eq. (6), F is a so-called Kesten's 
variable. ~3) However, since I Wn/(z + W,)[ < 1, the Kesten equation 

([W/(z+ w ) ]  ~)  = 1 

has the unique trivial solution • = 0. In other words, Kesten's theorem does 
not apply here. 

2. CALCULATION OF Q(x 1, z) A N D  CONSEQUENCES 

In order to analyze the integral equation (7), we first Laplace trans- 
form it with respect to F by defining 

fo +~ 
II(~, z) = dFe-C~P(F, z) 

Direct substitution in Eq. (7) yields 

fo H(~, z) = dW p(W) e-  wz,/(z + w) H z, z (9) 
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This latter integral equation is now formally solved by assuming an 
entire series expansion for H(z, z): 

+oo 
H(z, z)= 1 + ~ ct,(z) z n (10) 

n=] 

Note that ~n(z) = ( -  1)n n! <F n >p(Z). Thus, we are assuming that all 
the positive moments of P(F, z) exist, a fact which will be established 
below. From Eq. (9), the coefficients are seen to obey the following 
triangular recursion: 

S.(z) ~ (--1)m 
o:,(z)- 1 -  Sn(z~) ~ m ~  Zmo~, m(Z),  0%(Z)= 1 (11) 

m= 1 

where the quantities Sn(z) are defined as 

Sn(z) = <[W/(z+ w)]  n) 

By using Eq. (3), it is seen that S,(z) has the expansion 

S n ( z ) = . l  _ lr ( z / W m ) u  +~ n(n+l)" ' (n+p-1)[-_~mm] p 
sin rc~ B(n, ~ ~ E p!-(pC ~ + "'" 

p=l (12) 

where B(n, #) denotes as usual the beta function F ( n ) F ( # ) / F ( n  +#).  It 
appears hopeless to solve in a closed form the recursion (11) for any z. 
However, we can find the asymptotic form of an(z ) for [z[ ~ Wm; indeed, 
according to Eqs. (11) and (12), it is seen that the ~n(z) have the following 
approximate expression: 

,n(z) = (1 - S1) ( i  Z 8 2 ) . . .  (1 - S n )  1 ~- O ~ (13) 

where fl is a positive exponent. 
This obviously yields the small-z behavior of H(F, z) and thus allows 

one to obtain the probability distribution of x(t) at large times. For clarity, 
we now investigate separately the two cases # < 1 and # > 1. Their differen- 
ces result from the behavior of ~l(Z) at small z; indeed, from (3) one has 

~r# z ~ - 1 +  ... (14) (i) # < 1 :  <(z+W) 1 ) = W m " s i n ~  # 

(ii) # > 1  < ( z - ) - W ) - ' )  Wm ~ # - 1  I l l  �9 = - - +  - - -  + - -  (15) 
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2.1. I ,<1  

By using Eqs. (12)-(14), it then turns out that, for [z[ ~ Win, the e~ are 
given to the leading order by 

1! 2! 3 ! - . . ( n - l ) !  
( # +  1) "-1 ( # +  2) " - 2 . . .  ( # + n - -  l)  ( n > l )  

(16) 

From the above equations, it is readily seen that for small z, H(z, z) can 
be written as 

H(z, z)= F u [Z(z, #)3, 
sin rc/~ 

Z('[ ' ,  I , / )=  W~rnZ1- P"c (17) 

where the function Fu(Z ) is given by the expansion 

+o~ 1! 2! ... ( n -  1)! 
F , ( Z ) = I - Z +  ~ 1),_ 1 - . - ( p + n -  1) n=2 ( # +  (/"l q- 2 ) n -  2 

+ao 
=- c.(-z)" 

n=O 

( - Z ) "  

(18) 

Equations (17) and (18) show that H(v, z) is a series of the form 
Z,  d~( zl -u),. In a full calculation, d, should be replaced by some function 
of z, the leading term of which is precisely d,, whereas the first correction 
is of the order (Z/Wm) u or (z/Wm) I-" (see Section 3). For the asymptotic 
regime, the approximation given in (18) is sufficient. 

The scaling law provided by (17) and (18) establishes the fact that, for 
any sample, x(t) behaves like t u. Indeed, let a random function ~b(t) be such 
that ~b(t)= at", where a is random and follows the probability distribution 
co(a). Then, the Laplace transform of ~b(t) is ~(z) = aF(# + 1) z -(u+ ll; the 
probability distribution of g' is simply given by 

zu+l [zu+,  ] 
Q(e, z)= v(n + co Lr +-l) e (19) 

Denoting now by f~(X) the Laplace inverse of the function F,(Z) 
defined in Eq. (18), using the above scaling law (17) and Eq. (8), we find 

x(t)~xo(Wmt)" (20) 
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where Xo is a random number with a distribution p,(xo) given by 

~# I ~# F ( / ~ + l ) x o ]  p.(xo) = sin r~# F(# + 1)f~ sin ~kt (21) 

p~(xo) is explicitly known by all its moments; indeed, one has 

io ~~176 1! 2 ! . . . n !  (x ; )= x;p~(x~176176 1 ( # + 2 ) -  2 . . . ( # + n - 1 )  

(22) 

where 

sin re# 
( x 0 )  = (23) 

~ F ( #  + 1 ) 

Note that Eqs. (20)and (23) reproduce the disorder average given by 
Eq. (21) in ref. 1, as they should, All the moments can be easily calculated 
in a recursive way due to the obvious relation 

(x~+ 1) - (n+  1)! (Xo)(X~) (24) 
( # +  1 ) ( # + 2 ) . . . ( # + n )  

It is interesting to observe that pF,(Xo) is not a broad law in the sense 
that all its positive moments exist. Indeed, due to the fact that the series 
given by Eq. (18) is a convergent one for any finite Z and ~ > 0 ,  it can be 
inferred that p~(xo) certainly decreases faster than a stretched exponential 
e x p ( - x ; )  (c~ > 0) at large Xo. This is consistent with the fact that Kesten's 
theorem is not applicable in our case. Note that p~(xo) takes on a very 
simple form for # = 0 or/~ = 1: 

(i) # = 0  F b ( Z ) = ( I + Z )  -1 i.e., p~ o(Xo)=e x0 

(ii) /~=1 FI(Z)=e z i.e., p~_l(Xo)=b(xo-O +) 

Note that the value /~ = 0 is not strictly allowed, since in this case, 
the repartition law p(W) [-see Eq. (3)] would not be normalized. There 
is a qualitative discontinuous change between # = 0 and /~ = 0 +, which is 
reflected by the fact that for any /~ >0,  F~(Z) has no singularity at a 
finite distance of the origin, whereas for # = 0, a unique pole arises for 
Z = - 1 .  In this respect, the purely exponential function e x0 cannot 
properly represent the limiting situation # = 0  +, for which the value of 
p ( x o = 0  +) is conjectured to be equal to 0.5, and not to 1. 
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The second result above means that, for # = 1, the random number Xo 
takes the value 0 § with probability 1. This is in agreement with the fact 
that, in this case, the velocity indeed vanishes and that p- -1  is the onset 
of the self-averaging property for the velocity [see Eqs. (22) and (30) in 
ref. 1]. For 0 < g <  1, Fu(Z) smoothly interpolates between Fo(Z) and 
FI(Z) (see Fig. 1). 

A better insight into the distribution p~(xo) is provided by the two first 
moments. From Eq. (23), one sees that the average value of x0 decreases 
from 1 to zero when # increases from 0 to 1 (see Fig. 1). It is readily seen 
that 

y--*O + ( X o ) ~ l + C p  

p ~  l (Xo)~  l - #  

(C = Euler's constant) 

The mean square deviation is given by 

- <Xo)  = < X o )  1 
1 + #  

(25) 

and displays the same monotonic variation as (x0)  (see Fig. 2): 

# ~ 0  + (Xo) ~ 1 - 2 ( C +  1)y 

g ~ l  (Xo) ~ ( 1 - # )  3 

On the contrary, higher cumulants do not have such a plain variation 
and display oscillationlike behavior. 

The function p,(xo) has been numerically computed according to the 
following scheme. Due to the fact that F~(Z) has no singularity, for y > 0, 

F(X) l,o 
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Fig. 1. Variation of the scaling function F~(X) as defined by Eq. (18) for # = 0.0, 0.5, 1.0. 
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Fig. 2. Variation of the first moment and of the mean square dispersion of the probability 
distribution pu(xo) giving the random coefficient x 0 of x(t) in the asymptotic regime for/~ < 1 
[see Eqs. (22), (23), and (25)]. 

in the closed half-plane Re Z ~> 0, the Bromwich line can be shifted onto the 
imaginary axis. The inverse Laplace transformation thus takes the form 

{Xo) o c O S { x o ) t + F  (t) s i n - ~ - ~ t  

where F+ denotes the even and odd parts of Fu(Z = it): 

F+(t)= �89 Fu(-it)]= ~ (-1)P czpt 2p 
p=O 

F _ ( t )  = � 8 9  F u ( - i t ) ]  = 
p = 0  

( _  l ) p  C2p+ lt2p+ 1 

The coefficients c, are given by the expansion (18). pu(xo) can then be 
numerically computed by first summing the series and then performing a 
numerical quadrature. The results are reported on Fig. 3 for several values 
of #. It is seen that, as expected, when p increases, a peak occurs which is 
more and more pronounced and moves toward the origin. In the limit 
# ~ 1, this fact yields the 6 ( X o - 0  +) distribution. This phenomenon may 
be viewed as the precursor of the settling of the self-averaging property at 
# = 1 (see Fig. 3 in ref. 1 ). 
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p(x 0) 

2,0 

1,0 ~ 

0,0 . . . .  
0 

0_75 

0.5 
t~o6 j 
~ _  . / J -  J -  0.0 

1 2 3 x 0 

Fig. 3. Variation of the distribution function pu as a function of x 0 for # = 0.0, 0.4, 0.5, 0.6, 
and 0.75. Recall that, stricto sensu, the curve # = 0 does not belong to the class of models 
considered here. 

2.2. g > l  

Now, due to Eqs. (12), (13), and (15), one finds 

~. (z )  = ( -  1)" 
n-----~ ( W-1 ) ~ (26) 

which in turn implies that 

H(z, z) = e x p ( - z / (  W -1 )) 

Thus, for small z, P(F, z) is given by 

P ( F , z ) = ~ ( F - 1 / ( m - 1 ) )  

(27) 

(28) 

This shows that the limit of the derivative of x(t) with respect to time, 
i.e., the velocity, tends to ( W  -1 ) -1 with probability 1 at large times. This 
thus quickly establishes the existence of a finite ordinary drift characterized 
by a self-averaging velocity, a result already obtained in ref. 4 by other 
methods. 

3, RELEVANT T I M E  SCALE 

On physical grounds, it is important to find the time scale t I beyond 
which the asymptotic regime characterized by Eq. (20) is indeed displayed 
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in a given sample. It can be guessed that, in the anomalous phase /~ < !, 
this time should exhibit a minimum. Indeed, in order to achieve this 
asymptotic regime, the particle has to experience properly the surrounding 
disorder, i.e., to feel the existence of many nearly broken links. For # ~ 0 +, 
these links are relatively numerous, but, since when a single small W is 
met, it takes a very large time (of the order of l/W) to go ahead, it will 
take a long time to see many such links. Thus, a very long time has to 
elapse before the anomalous asymptotic regime can occur. This can be 
viewed as a precursor of the ultraslow Sinai diffusion which occurs at/~ = 0 
in the general walk. On the other hand, for # - *  1, the particle moves 
quasinormally ( ~ t )  before encountering quasibroken links in sufficient 
number. It thus again takes a very long time to experience them, since 
those links are not very numerous. 

One way to find an estimate of the time scale tl is to analyze the first 
correction to the probability distribution H(r, z), the dominant term of 
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Fig. 4. Variation of the time scale Wm t l as defined in Section 3; each curve is labeled by the 
value of e. 
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which is given by the scaling function F j Z )  as defined by Eq. (18). After 
a tedious algebra, it is found that H(r,  z) can be written as 

H(~, z) = F , ( Z )  2 sin 7t# G~,(Z) + 1 - # ~ -  

(29) 

where G~ and Hu are known convergent series. In order to provide an 
estimate for t~, we take G, and H ,  of the order of unity and we define the 
first correction A as 

rc (~mm)" # s i n r c # ( ~ )  1 ~ -  (30) 
A 2sinTz# + 1 - #  ~z 

Since F~(z) is also assumed to be of the order of unity, one requires 
that A be a small number e. By writing A = e, we find ZI(#, e) and even- 
tually tl(#, e) = 1/Z~(#, ~). Thus, for times t >> tl, the regime described by 
Eq. (20) should be observable. Figure 4 shows the variation of tl(#, e) as a 
function of # for e -- 1 and e = 0.1. Clearly, the time to enter the asymptotic 
regime, if properly described by the above t~, is indeed very large, as 
expected. 

R E F E R E N C E S  

1. C. Aslangul, M. Barth616my, N. Pottier, and D. Saint-James, J. Stat. Phys. 59:11 (1990). 
2. J. P. Bouchaud, A. Comtet, A. Georges, and P. Le Doussal, Ann. Phys., submitted. 
3. H. Kesten, M. V. Kozlov, and F. Spitzer, Compos. Math. 30:145 (1975). 
4. C. Aslangul, J. P. Bouchaud, A. Georges, N. Pottier, and D. Saint-James, J. Stat. Phys. 

55:1065 (1989). 


